Category: MPLS VPN

MPLS/VPN Transport Options

Jason sent me an interesting question a few days ago: “assuming a vSwitch *did* support MPLS/VPN PE router functionality, what type of protocol support would be needed on the access layer switches?

While the MPLS/VPN support in hypervisor switches remains in the realm of science fiction, it’s worth knowing that there are at least five different transport options you can use between PE-routers. Here they are, from the most decoupled to the most tightly coupled ones:

read more see 6 comments

Scalability of Common Services MPLS/VPN topology

Nosx added a very valid point-of-view to the MPLS/VPN Common Services Design that uses a shared common service Route Target across numerous client VRFs:

This is an overly complex and unsupportable approach to shared services. Having to touch thousands of VRFs to create a shared services VPN is unacceptable. The correct approach is to touch only the "services" vrf, and import/export to each RT that you wish to insert the services into.

As always, the right answer is “it depends.” If you have few large customers, it makes way more sense to add their RTs to the common services VRF. If you have many small customers, adding RTs to the common services VRF does not scale.

read more see 7 comments

Scaling IaaS network infrastructure

I got totally fed up with the currently popular “flat-earth with long-distance bridging” architecture paradigm while developing the Data Center Interconnects webinar. It all started with the layer-2 hypervisor switches and lack of decent L3 network-side solutions; promoting non-scalable cloudy solutions doesn’t help either.

The network infrastructure would scale better if the hypervisors would work as MPLS/VPN PE-routers, but even MPLS would hit scalability limits when the number of servers grows into tens of thousands. The only truly scalable solution is IP-over-IP or MAC-over-IP implemented in the hypervisor switches.

I tried to organize all these thoughts in the “How to build a scalable IaaS cloud network infrastructure” article that was recently published by SearchTelecom ... and just a few days after the article was published, Brad Hedlund pointed me to Infrastructure as a Service Builder’s Guide document, which is saying almost the same thing (and coming to flawed conclusions because they had to promote OpenFlow and NEC).

see 7 comments

MPLS/VPN in Data Center Interconnect (DCI) Designs

Yesterday I was describing a dreamland in which hypervisor switches would use MPLS/VPN to implement seamless scalable VM mobility across IP+MPLS infrastructure. Today I’ll try to get down to earth; there are exciting real-life design using MPLS/VPN between data centers. You can implement them with Catalyst 6500/Cisco 7600 or ASR1K and will soon be able to do the same with Nexus 7000.

Most data centers have numerous security zones, from external network, DMZ, web servers and applications servers to database servers, IP-based storage and network management. When you design active/active data centers, you want to keep the security zones strictly separate and the “usual” solution proposed by L2-crazed crowd is to bridge multiple VLANs across the DCI infrastructure (in the next microsecond they start describing the beauties of their favorite L2 DCI technology).

read more see 6 comments

(v)Cloud Architects, ever heard of MPLS?

Duncan Epping, the author of fantastic Yellow Bricks virtualization blog tweeted a very valid question following my vCDNI scalability (or lack thereof) post: “What you feel would be suitable alternative to vCD-NI as clearly VLANs will not scale well?

Let’s start with the very basics: modern data center switches support anywhere between 1K and 4K (the theoretical limit based on 802.1q framing) VLANs. If you need more than 1K VLANs, you’ve either totally messed up your network design or you’re a service provider offering multi-tenant services (recently relabeled by your marketing department as IaaS cloud). Service Providers had to cope with multi-tenant networks for decades ... only they haven’t realized those were multi-tenant networks and called them VPNs. Maybe, just maybe, there’s a technology out there that’s been field-proven, known to scale, and works over switched Ethernet.

read more see 68 comments

MPLS/VPN-over-GRE-over-IPSec: Does It Really Work?

Short answer: yes, it does.

During the geeky chat we had just after we’d finished recording the Data Center Fabric Packet Pushers podcast, Kurt (@networkjanitor) Bales asked me whether the MPLS/VPN-over-DMVPN scenarios I’m describing in Enterprise MPLS/VPN Deployment webinar really work (they do seem a bit complex).

I always test the router configurations I use in my webinars and I usually share them with the attendees. Enterprise MPLS/VPN Deployment webinar includes a complete sets of router configurations covering 10 scenarios, including five different MPLS/VPN-over-DMVPN designs, so you can easily test them in your lab and verify that they do work. But what about a live deployment?

read more see 15 comments

Load sharing in MPLS/VPN networks with route reflectors

Some of the e-mails and comments I received after writing the “Changing VPNv4 route attributespost illustrated common MPLS/VPN misconceptions, so it’s worth addressing them in a series of posts. Let’s start with the simplest scenario: load balancingsharing toward a multi-homed customer site. We’ll use a very simple MPLS/VPN network with three customer sites, four CE-routers, four PE-routers a route reflector:

read more see 15 comments

End-to-End QoS marking in MPLS/VPN-over-DMVPN networks

I got a great question in one of my Enterprise MPLS/VPN Deployment webinars when I was describing how you could run MPLS/VPN across DMVPN cloud:

That sounds great, but how does end-to-end QoS work when you run IP-over-MPLS-over-GRE-over-IPSec-over-IP?

My initial off-the-cuff answer was:

Well, when the IP packet arriving through a VRF interface gets its MPLS label, the IP precedence bits from the IP packet are copied into the MPLS EXP (now TC) bits. As for what happens when the MPLS packet gets encapsulated in a GRE packet and when the GRE packet is encrypted… I have no clue. I need to test it.

read more see 9 comments

MPLS/VPN over mGRE strikes again

More than five years after the MPLS/VPN-in-mGRE encapsulation was standardized (add a few more years for the work-in-progress and IETF draft stages), it finally debuted in a mainstream-wannabe IOS release running on ISR routers (15.1(2)T), making it usable for the enterprise WAN designers, who are probably its best target audience.

I was writing about the two conflicting MPLS/VPN over mGRE implementations a while ago and got the impression the Service Providers aren’t too excited about this option. No wonder – most of them use full-blown MPLS backbones, so they have no need for GRE tunnels.

read more see 5 comments

Campfire: the true story of MPLS

Just before 2010 disappeared, a tweet by my friend Greg @etherealmind Ferro triggered a minor twitstorm. He wrote:

If we had implemented IPv6 ten years ago, would we have MPLS today? I think not.

His tweet contains two major misconceptions:

  • MPLS was designed to implement layer-3 VPN services;
  • We wouldn’t need VPNs if everyone would be using global IPv6 addresses.

I’ll focus on the first one today; the inaccuracy of the second one is obvious to anyone who was asked to implement MPLS VPNs in enterprise networks to ensure end-to-end path separation between departments or users with different security levels.

read more see 5 comments

Solving the MPLS/VPN QoS Challenge

Two weeks ago I wrote about the challenges you’ll encounter when trying to implement end-to-end QoS in an enterprise network that uses MPLS/VPN service as one of its transport components. Most of the issues you’ll encounter are caused by the position of the user-SP demarcation point. The Service Providers smartly “assume” the demarcation point is the PE-router interface… and everything up to that point (including their access network) is your problem.

Typical MPLS/VPN demarcation point

Typical MPLS/VPN demarcation point

read more see 6 comments

QoS over MPLS/VPN Networks

A while ago John McManus wrote a great DSCP QoS Over MPLS Thoughts article at Etherealmind blog explaining how 6-bit IP DSCP value gets mapped into 3-bit MPLS EXP bits (now renamed to Traffic Class field). The most important lesson from his post should be “there is no direct DSCP-to-EXP mapping and you have to coordinate your ideas with the SP”. Let’s dig deeper into the SP architecture to truly understand the complexities of this topic.

We’ll start with a reference diagram: user traffic is flowing from Site-A to Site-B and the Service Provider is offering MPLS/VPN service between PE-A and PE-B. Traffic from multiple customer sites (including Site-A) is concentrated at SW-A and passed in individual VLANs to PE-A.

read more see 1 comments
Sidebar