Building network automation solutions

9 module online course

Start now!

Fun Times: Another Broken Linux ALG

Dealing with protocols that embed network-layer addresses into application-layer messages (like FTP or SIP) is great fun, more so if the said protocol traverses a NAT device that has to find the IP addresses embedded in application messages while translating the addresses in IP headers. For whatever reason, the content rewriting functionality is called application-level gateway (ALG).

Even when we’re faced with a monstrosity like FTP or SIP that should have been killed with napalm a microsecond after it was created, there’s a proper way of doing things and a fast way of doing things. You could implement a protocol-level proxy that would intercept control-plane sessions… or you could implement a hack that tries to snoop TCP payload without tracking TCP session state.

Not surprisingly, the fast way of doing things usually results in a wonderful attack surface, more so if the attacker is smart enough to construct HTTP requests that look like SIP messages. Enjoy ;)

add comment

Reviving Old Content, Part 1

More than a decade ago I published tons of materials on a web site that eventually disappeared into digital nirvana, leaving heaps of broken links on my blog. I decided to clean up those links, and managed to save some of the vanished content from the Internet Archive:

I also updated dozens of blog posts while pretending to be Indiana Jones, including:

read more add comment

Over 300 Hours of Subscription Content on ipSpace.net

It’s amazing how far you can get if you keep doing something for a long-enough time. In a bit over 10 years (the initial versions of the earliest still-active webinars were created in October 2010), we accumulated over 300 hours of online content available with ipSpace.net subscription, plus another 130 hours of online course content.

Obviously I couldn’t have done that myself. Thanks a million to Irena who took over most of the day-to-day business a few years ago, dozens of authors, and thousands of subscribers who enabled us to make it all happen.

see 1 comments

Growing Beyond Networking Skills

One of my subscribers trying to figure out how to improve his career choices sent me this question:

I am Sr. Network Engineer with 12+ Years’ experience. I was quit happy with my networking skills but will all the recent changes I’m confused. I am not able to understand what are the key skills I should learn as a network engineer to keep myself demandable.

Before reading the rest of this blog post, please read Cloud and the Three IT Geographies by Massimo Re Ferre.

read more add comment

Fast Failover: Hardware and Software Implementations

In previous blog posts in this series we discussed whether it makes sense to invest into fast failover network designs, the topologies you can use in such designs, and the fault detection techniques. I also hinted at different fast failover implementations; this blog post focuses on some of them.

Hardware-based failover changes the hardware forwarding tables after a hardware-detectable link failure, most likely loss-of-light or transceiver-reported link fault. Forwarding hardware cannot do extensive calculations; the alternate paths are thus usually pre-programmed (more details below).

read more see 10 comments

Why Is Public Cloud Networking So Different?

A while ago (eons before AWS introduced Gateway Load Balancer) I discussed the intricacies of AWS and Azure networking with a very smart engineer working for a security appliance vendor, and he said something along the lines of “it shows these things were designed by software developers – they have no idea how networks should work.

In reality, at least some aspects of public cloud networking come closer to the original ideas of how IP and data-link layers should fit together than today’s flat earth theories, so he probably wanted to say “they make it so hard for me to insert my virtual appliance into their network.

read more see 1 comments

Worth Reading: Do Your Homework

Tom Hollingsworth wrote another must-read blog post in which he explained what one should do before asking for help:

If someone comes to me and says, “I tried this and it failed and I got this message. I looked it up and the response didn’t make sense. Can you tell me why that is?” I rejoice. That person has done the legwork and narrowed the question down to the key piece they need to know.

In other words (again his), do your homework first and then ask relevant questions.

add comment

Video: Know Your Users' Needs

After explaining why you should focus on defining the problem before searching for a magic technology that will solve it, I continued the Focus on Business Challenges First presentation with another set of seemingly simple questions:

  • Who are your users/customers?
  • What do they really need?
  • Assuming you’re a service provider, what are you able to sell to your customers… and how are you different from your competitors?
The video is part of Business Aspects of Networking Technologies webinar and available with Free ipSpace.net Subscription.
add comment

Fast Failover: Topologies

In the blog post introducing fast failover challenge I mentioned several typical topologies used in fast failover designs. It’s time to explore them.

The Basics

Fast failover is (by definition) adjustment to a change in network topology that happens before a routing protocol wakes up and deals with the change. It can therefore use only locally available information, and cannot involve changes in upstream devices. The node adjacent to the failed link has to deal with the failure on its own without involving anyone else.

read more add comment

Why Is OSPF not Using TCP?

A Network Artist sent me a long list of OSPF-related questions after watching the Routing Protocols section of our How Networks Really Work webinar. Starting with an easy one:

From historical perspective, any idea why OSPF guys invented their own transport protocol instead of just relying upon TCP?

I wasn’t there when OSPF was designed, but I have a few possible explanations. Let’s start with the what functionality should the transport protocol provide reasons:

read more see 8 comments

How Fast Can We Detect a Network Failure?

In the introductory fast failover blog post I mentioned the challenge of fast link- and node failure detection, and how it makes little sense to waste your efforts on fast failover tricks if the routing protocol convergence time has the same order of magnitude as failure detection time.

Now let’s focus on realistic failure detection mechanisms and detection times. Imagine a system connecting a hardware switching platform (example: data center switch or a high-end router) with a software switching platform (midrange router):

read more add comment

New Content: Graph Algorithms – Flows and Connectivity

Last week we enjoyed the second half of Graph Algorithms lecture by Rachel Traylor, this time focusing on flow- and connectivity challenges.

After an easy start defining flows and walking us through various maximum flow algorithms, Rachel explained circulations and saturating flows, switched into high gear with (supposedly painless) intro to linear programming and minimum cost flow problems, and concluded with dynamic flows and using flows to explore graph connectivity.

You’ll need Standard or Expert ipSpace.net subscription to watch the videos.

add comment

Self-promotion Disguised as Research Paper

From AI is wrestling with a replication crisis (HT: Drew Conry-Murray)

Last month Nature published a damning response written by 31 scientists to a study from Google Health that had appeared in the journal earlier this year. Google was describing successful trials of an AI that looked for signs of breast cancer in medical images. But according to its critics, the Google team provided so little information about its code and how it was tested that the study amounted to nothing more than a promotion of proprietary tech (emphasis mine).

No surprise there, we’ve seen it before (not to mention the “look how awesome we are, but we can’t tell you the detailsJupiter Rising article).

add comment

Video: Getting a Packet Across a Network

After (hopefully) agreeing on what routing, bridging, and switching are, let’s focus on the first important topic in this area: how do we get a packet across the network? Yet again, there are three fundamentally different technologies:

  • Source node knows the full path (source routing)
  • Source node opened a path (virtual circuit) to the destination node and uses that path to send traffic
  • The network performs hop-by-hop destination-address-based packet forwarding.

More details in the Getting Packets Across the Network video.

The video is part of How Networks Really Work webinar and available with Free ipSpace.net Subscription.
add comment

Worth Reading: Protocol Options Rusted Shut

A long while ago I found a great article explaining TLS 1.3 and its migration woes on CloudFlare blog. While I would strongly recommend you read it just to get familiar with TLS 1.3, the real fun starts when the author discusses migration problems, kludges you have to use trying to fix them, less-than-compliant implementations breaking those kludges, and options that were supposed to be dynamic, but turn out to be static (rusted shut) due to middleboxes that implemented protocols as-seen-in-the-wild not as-described-in-RFCs.

Change a few TLAs and you could be reading about TCP, IP stack, IPv6, BGP… I addressed those aspects in the ossification and centralization part of Upcoming Internet Challenges webinar.

add comment
Sidebar