Routing Table and BGP RIB on SR Linux

Ages ago, I described how “traditional” network operating systems used the BGP Routing Information Base (BGP RIB), the system routing table (RIB), and the forwarding table (FIB). Here’s the TL&DR:

  1. Routes received from BGP neighbors are stored in BGP RIB.
  2. Routes redistributed into BGP from other protocols are (re)created in the BGP RIB.
  3. BGP selects the best routes in BGP RIB using its convoluted set of rules.
  4. Best routes from the BGP RIB are advertised to BGP neighbors
  5. Best routes from the BGP RIB compete (based on their administrative distance) against routes from other routing protocols to enter the IP routing table (system RIB)
  6. Routes from the system RIB are copied into FIB after their next hops are fully evaluated (a process that might involve multiple recursive lookups).
read more add comment

Common Services VRF with EVPN Control Plane

After discovering that some EVPN implementations support multiple transit VNI values in a single VRF, I had to check whether I could implement a common services L3VPN with EVPN.

A common services VPN is a VPN in which server sites can communicate with each other and the clients, but the clients cannot communicate between themselves.

TL&DR: It works (on Arista cEOS)1.

Here are the relevant parts of a netlab lab topology I used in my test (you can find the complete lab topology in netlab-examples GitHub repository):

read more see 4 comments

Multivendor EVPN Just Works

Shipping netlab release 1.9.0 included running 36 hours of integration tests, including fifteen VXLAN/EVPN tests covering:

  • Bridging multiple VLANs
  • Asymmetric IRB, symmetric IRB, central routing, and running OSPF within an IRB VRF.
  • Layer-3 only VPN, including routing protocols (OSPF and BGP) between PE-router and CE-routers
  • All designs evangelized by the vendors: IBGP+OSPF, EBGP-only (including reusing BGP AS number on leaves), EBGP over the interface (unnumbered) BGP sessions, IBGP-over-EBGP, and EBGP-over-EBGP.

All tests included one or two devices under test and one or more FRR containers1 running EVPN/VXLAN with the devices under test. The results were phenomenal; apart from a few exceptions, everything Just Worked™️.

read more see 1 comments

Using No-Export Community to Filter Transit Routes

The very first BGP Communities RFC included an interesting idea: let’s tag paths we don’t want to propagate to other autonomous systems. For example, the prefixes received from one upstream ISP should not be propagated to another upstream ISP (sadly, things don’t work that way in reality).

Want to try out that concept? Start the Using No-Export Community to Filter Transit Routes lab in GitHub Codespaces.

keep reading

Using Multiple Transit VNIs per EVPN VRF

After reading the Layer-3-Only EVPN: Behind the Scenes blog post, one might come to an obvious conclusion: the per-VRF EVPN transit VNI must match across all PE devices forwarding traffic for that VRF.

Interestingly, at least some EVPN implementations handle multiple VNIs per VRF without a hitch; I ran my tests in a lab where three switches used unique per-switch VNI for a common VRF.

The rest of this blog post describes Arista cEOS behavior; please feel free to use the same netlab topology to run similar tests on other devices.
read more add comment

Testing bgpipe with netlab

Ever since Pawel Foremski talked about BGP Pipe @ RIPE88 meeting, I wanted to kick its tires in netlab. BGP Pipe is a Go executable that runs under Linux (but also FreeBSD or MacOS), so I could add a Linux VM (or container) to a netlab topology and install the software after the lab has been started. However, I wanted to have the BGP neighbor configured on the other side of the link (on the device talking with the BGP Pipe daemon).

I could solve the problem in a few ways:

read more add comment
Sidebar