Video: IPv6 RA Guard and Extension Headers

Last week’s IPv6 security video introduced the rogue IPv6 RA challenges and the usual countermeasure – RA guard. Unfortunately, IPv6 tends to be a wonderfully extensible protocol, creating all sorts of opportunities for nefarious actors and security researchers.

For years, the networking vendors were furiously trying to plug the holes created by the academically minded IPv6 designers in love with fragmented extension headers. In the meantime, security researches had absolutely no problem finding yet another weird combination of IPv6 headers that would bypass any IPv6 RA guard implementation until IETF gave up and admitted one cannot have “infinitely extensible” and “secure” in the same sentence.

For more details watch the video by Christopher Werny describing how one could use IPv6 extension headers to circumvent IPv6 RA guard

You need Free ipSpace.net Subscription to watch the video.
add comment

MLAG Deep Dive: Layer-2 Flooding

In the previous blog post of the MLAG Technology Deep Dive series, we explored the intricacies of layer-2 unicast forwarding. Now let’s focus on layer-2 BUM1 flooding functionality of an MLAG system.

Our network topology will have two switches and five hosts, some connected to a single switch. That’s not a good idea in an MLAG environment, but even if you have a picture-perfect design with everything redundantly connected, you will have to deal with it after a single link failure.

read more add comment

When You Find Yourself on Mount Stupid

The early October 2021 Facebook outage generated a predictable phenomenon – couch epidemiologists became experts in little-known Bridging the Gap Protocol (BGP), including its Introvert and Extrovert variants. Unfortunately, I also witnessed several unexpected trips to Mount Stupid by people who should have known better.

To set the record straight: everyone’s been there, and the more vocal you tend to be on social media (including mailing lists), the more probable it is that you’ll take a wrong turn and end there. What matters is how gracefully you descend and what you’ve learned on the way back.

read more see 2 comments

netlab: Combining VLANs with VRFs

Last two weeks we focused on access VLANs and VLAN trunk netlab implementation. Can we combine them with VRFs? Of course.

The trick is very simple: attributes within a VLAN definition become attributes of VLAN interfaces. Add vrf attribute to a VLAN and you get all VLAN interfaces created for that VLAN in the corresponding VRF. Can’t get any easier, can it?

How about extending our VLAN trunk lab topology with VRFs? We’ll put red VLAN in red VRF and blue VLAN in blue VRF.

read more add comment

Video: Rogue IPv6 RA Challenges

IPv6 security-focused presentations were usually an awesome opportunity to lean back and enjoy another round of whack-a-mole, often starting with an attacker using IPv6 Router Advertisements to divert traffic (see also: getting bored at Brussels airport) .

Rogue IPv6 RA challenges and the corresponding countermeasures are thus a mandatory part of any IPv6 security training, and Christopher Werny did a great job describing them in IPv6 security webinar.

You need Free ipSpace.net Subscription to watch the video.
add comment

Using Custom Vagrant Boxes with netlab

A friend of mine started using Vagrant with libvirt years ago (it was his enthusiasm that piqued my interest in this particular setup, eventually resulting in netlab). Not surprisingly, he’s built Vagrant boxes for any device he ever encountered, created quite a collection that way, and would like to use them with netlab.

While I didn’t think about this particular use case when programming the netlab virtualization provider interface, I decided very early on that:

  • Everything worth changing will be specified in the system defaults
  • You will be able to change system defaults in topology file or user defaults.
read more see 1 comments

Select the Best Switching ASIC For the Job

Last week I described some of the data center switching ASIC design tradeoffs and the ASIC families Broadcom created to fit somewhere in that multi-dimensional space.

Next step: how could you design your data center fabric to make the most out of them? To keep things simple, we’ll build a typical leaf-and-spine fabric with a WAN edge layer (sometimes called border leaf switches).

read more see 1 comments

MLAG Deep Dive: Dynamic MAC Learning

In the first blog post of the MLAG Technology Deep Dive series, we explored the components of an MLAG system and the fundamental control plane requirements.

This post focuses on a major building block of the layer-2 data plane functionality: MAC learning. We’ll keep using the same network topology with two switches and five hosts, and assume our system tries its best to implement hot-potato switching (sending the frames toward the destination MAC address on the shortest possible path).

read more add comment

Data Center Switching ASICs Tradeoffs

A brief mention of Broadcom ASIC families in the Networking Hardware/Software Disaggregation in 2022 blog post triggered an interesting discussion of ASIC features and where one should use different ASIC families.

Like so many things in life, ASIC design is all about tradeoffs. Usually you’re faced with a decision to either implement X (whatever X happens to be), or have high-performance product, or have a reasonably-priced product. It’s very hard to get two out of three, and getting all three is beyond Mission Impossible.

read more see 2 comments

MLAG Deep Dive: System Overview

Multi-Chassis Link Aggregation (MLAG) – the ability to terminate a Port Channel/Link Aggregation Group on multiple switches – is one of the more convoluted1 bridging technologies2. After all, it’s not trivial to persuade two boxes to behave like one and handle the myriad corner cases correctly.

In this series of deep dive blog posts, we’ll explore the intricacies of MLAG, starting with the data plane considerations and the control plane requirements resulting from the data plane quirks. If you wonder why we need all that complexity, remember that Ethernet networks still try to emulate the ancient thick yellow cable that could lose some packets but could never reorder packets or deliver duplicate packets.

read more see 1 comments

VXLAN-Focused Design Clinic in June 2022

ipSpace.net subscribers are probably already familiar with the Design Clinic: a monthly Zoom call in which we discuss real-life design- and technology challenges. I started it in September 2021 and it quickly became reasonably successful; we covered almost two dozen topics so far.

Most of the challenges contributed for the June 2022 session were focused on VXLAN use cases (quite fitting considering I just updated the VXLAN Technical Deep Dive webinar), including:

  • Can we implement Data Center Interconnect (DCI) with VXLAN? (Yes, but…)
  • Can we run VXLAN over SD-WAN (and does it make sense)? (Yes/No)
  • What happened to traditional MPLS/VPN Enterprise core and can we use VXLAN/EVPN instead? (Still there/Maybe)
  • Should we use routers or switches as data center WAN edge devices, and how do we integrate them with VXLAN/EVPN data center fabric? (Yes 😊)

For more details, join us on June 6th. There’s just a minor gotcha: you have to be an active ipSpace.net subscriber to do it.

add comment

netlab Simple VLAN Example

I had no idea how convoluted VLANs could get until I tried to implement them in netlab.

We’ll start with the simplest option: a single VLAN stretched across two bridges switches with two Linux hosts connected to it. netlab can configure VLANs on Arista EOS, Cisco IOSv, Cisco Nexus OS, VyOS, Dell OS10, and Nokia SR Linux. We’ll use the quickest (deployment-wise) option: Arista EOS on containerlab.

Simple VLAN topology

Simple VLAN topology

read more add comment
Sidebar