EIGRP Offset Lists
A simplistic explanation of EIGRP offset-list configuration command you might see every now and then is “it adjusts the RD/FD to influence route selection”. If that would be the case, the adjustment would not be propagated to upstream routers (remember: only the EIGRP vector metric is sent in the routing updates, not RD or FD) resulting in potential routing loops (it’s never a good idea to use one set of metrics and propagate another set of metrics to your neighbors).
In reality, the EIGRP offset lists adjust the delay portion of the EIGRP vector metric (which linearly influences the RD/FD value). You can increase the value of the delay metric for EIGRP updates received or sent through a specific interface (or all interfaces). You can also use an access list in the offset-list command, applying changes only to specific IP prefixes. For more details, please read this technology note on Cisco’s web site.
DMVPN: Fishing Rod or Grilled Tuna?
Last days I was eating, drinking, breathing and dreaming DMVPN as I was preparing lab scenarios for my DMVPN webinar (the participants will get complete router configurations for 12 different scenarios implemented in an 8-router fully redundant DMVPN network).
Some of the advanced scenarios were easy; for example, I’ve found a passing reference to passive RIPv2 with IP SLA in the DMVPN/GETVPN Design & Case Study presentation (lost in the mists of time). I knew exactly what the author had in mind and was able to create a working scenario in minutes. Unfortunately, 2-tier hub site with IPSec offload was a completely different beast.
DNSSEC ... finally!
It looks like the signed DNS root zone might finally get deployed on July 15th and Geoff Huston celebrates the fact with a lengthy article on DNSSEC. Just in case you’re not aware what DNSSEC is all about, he’s providing this nifty summary:
A succinct summary of the problem that DNSSEC is intended to address is that DNSSEC is intended to protect DNS clients from believing forged DNS data.
Read the rest of the article on his blog.
DNSSEC deployment could cause some firewalls to hiccup. You might have to change your ASA configuration; zone-based firewall on IOS supposedly works just fine.
Book review: Securing the Borderless Network
When Cisco started preaching about Borderless Networks a few months ago, we all knew the term Borderless Networks was a new fuzzily-defined paradigm revolving around the facts that:
- People want to use their smartphones (and other mobile devices) to access the corporate data from anywhere at any time.
- Employees have started to use third-party cloud services with unproven security or reliability without coordination with corporate IT or Security.
However, when Cisco Press launched the Securing the Borderless Network book (with the subtitle Security for the Web 2.0 World), I was hoping to get some insight into what Cisco really means with the Borderless Networks paradigm. I was also expecting some hard technical facts and solutions for the problems pestering all of us.
uRPF Violation Logging Is Not Working on 12.4T
One of the scenarios I’m discussing in the DMVPN webinar is redundant DMVPN network with two ISPs. It’s not a particularly complex setup, unless the ISPs decide to deploy anti-spoofing filters (more precisely: unicast RPF checks) in which case it becomes crucially important which outbound interface you use for your DMVPN tunnel.
Anyhow, I was trying to make the whole thing work in a lab and it was repeatedly failing, so I decided to log uRPF violations. According to the documentation, it’s a piece of cake:
Easy deployment of IPv6 content
During the last Google IPv6 Implementors Conference Donn Lee from Facebook showed how easy it is to make your content available over IPv6 and LISP ... if you happen to have the right load balancer that supports IPv6 (to view his presentation, click the slides link next to his name in the conference agenda). I would say all the excuses why your content cannot be possibly made available over IPv6 are gone (and one can only hope that a certain vendor I’m often mentioning will finally realize IPv6 is needed on more boxes than just routers and switches).
Hat tip to Andrej Kobal who sent me the link to the FB presentation.
Where would you need bridging in the Data Center
In the recent months, there’s been a lot of buzz about next-generation Data Center bridging, including the Earth Is Flat rediscovery from Brocade (I thought that was settled in middle ages) and a TRILL article in SearchNetworking (which quoted both Greg and me as being on the opposite sides of the TRILL debate).
The more I think about this problem, the more I’m wondering whether we really need large-scale bridging in data centers (it looks like Google can live quite happily without it). We definitely need some bridging, but generic large-scale inter-site monstrosity? I doubt.
Please try to help me: forget all the “this is how we do it” presumptions, figure out a scenario where you absolutely need bridging and describe it in the comments.
Tunnel Route Selection and DMVPN Tunnel Protection Don’t Work Together
Cisco has introduced Tunnel Route Selection, another “somewhat” underdocumented feature in IOS release 12.4(11)T (reading the sparse documentation, it appears to be a half-baked kludge implemented for a specific customer). I was wondering for a long time why I would ever want to use this feature, until Floris Martens asked me a question about a redundant DMVPN network using two ISPs, and all of a sudden it all made a perfect sense.
Manipulating EIGRP Metrics
If you want to influence traffic flow in a network, you might want to tweak routing protocol metrics to shift the traffic between paths of almost-equal cost (I would always prefer MPLS Traffic Engineering as it’s so much better, but sometimes changing a metric is faster than rebuilding your network). OSPF and IS-IS are easy: change the interface metric or interface bandwidth. EIGRP and its composite metric are trickier.
As you know, EIGRP vector metric has five components; two of which are usually ignored and MTU serves only as tie breaker. This leaves us with bandwidth and delay. Every EIGRP reference tells you to adjust interface delay, not bandwidth, and the simplistic explanation is that “bandwidth is used for QoS features, so it’s better left unchanged”. While that’s true, there are other more important reasons to focus on delay:
DMVPN Phase I overview
To understand the principles of DMVPN Phase I, remember these facts:
Worse is Better
My long-time friend Anne Johnson has published a link to Vijay Gill’s keynote presentation in her short summary of NANOG 49. Vijay has an interesting problem: Google’s infrastructure is so huge that he has no time for fancy toys or complex solutions; keeping the simple stuff running is hard enough. I love his rephrasing of the KISS principle (renamed to Worse is Better):
You see, everybody else is too afraid of looking stupid because they just can’t keep enough facts in their head at once to make multiple inheritance, … or multithreading, or any of that stuff work.
So they sheepishly go along with whatever faddish programming network craziness has come down from the architecture astronauts who speak at conferences and write books and articles and are so much smarter than us that they don’t realize that the stuff that they’re promoting is too hard for us.
His Guiding Principles are also excellent (and oft repeated by the old-timers who have learned their lessons the hard way):
- Important not to try to be all things to all people
- Don't build infrastructure just for its own sake
- Don't imagine unlikely potential needs that aren't really there
I would strongly suggest you browse through the rest of his presentation.
Interconnecting two core switches
Ethan Banks has a great article @ PACKETattack: in Assembly Required – Interconnecting 2 Ethernet Chassis Switches he describes various options you have when you want to connect your redundant core switches. Using more than one physical link is the obvious choice; most people are careful enough to use at least two linecards, but the true magic begins when you start considering the bandwidth allocation to individual linecards and port groups within linecards.
DDoS chow on Packet Pushers
Yesterday I finally found time to listen to the DDoS chewing podcast on Packet Pushers. While I know quite a bit about the technical solutions, their focus on the big picture and Service Provider offerings was a truly refreshing one (after all, if you’re under attack, it’s best if your upstream SP filters the junk).
They also mentioned a few interesting application-related issues that will definitely help me streamline my web sites (for example: once your load goes above a certain threshold, start serving cached data instead of retrieving it live from the database) and discussed an interesting case study where a networking engineer (Greg, if I’m not mistaken) managed to persuade the programmers to optimize the application, thus saving the company a lot of money in the long run.
Even if DDoS protection might not be relevant to your current job position and although a lot of their discussion was spinning around SP offerings and application-level solutions, I would strongly recommend that you listen to the podcast. After all, it never hurts to glance around your sandbox and consider other perspectives (and I definitely enjoyed the view).
BFD Has Reached RFC Status
Bidirectional Forwarding Detection (BFD) protocol has finally been published as a series of RFCs. BFD gives you quick failure detection between L3 hops (routers) regardless of the underlying technology and equipment (modems, media converters, bridges). It’s been gradually introduced in Cisco IOS during the last few years; release 15.0M and 12.2SRE contain almost everything you’ll ever need (missing: multihop BGP support and MPLS LSP support).
I wrote about BFD in Improve the Convergence of Mission-Critical Networks with Bidirectional Forwarding Detection (BFD) article (you’ll find it somewhere in this list). To learn more, read the RFCs in this order:
Network boot using IPv6 and/or DHCP patented
It’s amazing what people would try to patent ... and it’s even more amazing what gets past the examiners. IBM has managed to patent passing ipv6 or dhcp argument to indicate an IP host should network-boot over IPv6 or using DHCP. The idea is so trivial it’s almost not worth mentioning and goes along the lines of: “usually we use BOOTP and TFTP to get network boot parameters, but imagine we could pass DHCP as the argument to the boot routine and then it would use DHCP instead of BOOTP”.
The patent supposedly covers a very specific case, but (to my untrained eye) the claims are written in a way that could cover almost any IPv6- or DHCP-assisted network boot (or at least give lawyers plenty of stuff to charge for) ... exactly what we needed with all the other roadblocks and stumbling stones to IPv6 deployment.
Hat tip to John Curran for bringing this one to my attention.