When Machine Learning in Networking Might Make Sense
In March I explained why it’s unrealistic to expect to use machine learning to solve unknown problems in today’s snowflake networks… but are there other problems that could be solved?
Here’s an idea Paul Greenberg pointed me to: machine learning on public DNS data. Let’s see whether it might make sense:
Using Flow Tracking to Build Firewall Rulesets... and Halting Problem
Peter Welcher identified the biggest network security hurdle faced by most enterprise IT environments in his comment to Considerations for Host-based Firewalls (Part 1) blog post:
I have NEVER found a customer application team that can tell me all the servers they are using, their IP addresses, let alone the ports they use.
His proposed solution: use software like Tetration (or any other flow collecting tool) to figure out what’s really going on:
Accessing Docker Container Services over IPv6
Getting Docker to work with IPv6 is an interesting and under-documented (trying to stay diplomatic) adventure, but there’s a shortcut to the promised land: even if your Docker environment is pure IPv4 morass, you can still reach published container ports over IPv6 thanks to the userland proxy I described last week. The performance is obviously commensurate with traversing kernel-user boundary too many times.
New to this rabbit hole? Start here.
Finally, you don’t have to tell me (again) that Docker is dead and we should all use K8s. It’s as useful as telling me CloudStack is dead and we should all use OpenStack. Different challenges deserve different tools.
Vendor Marketectures in Real Life
Remember my rants about VMware and firewall vendors promoting crazy solutions that work best in PowerPoint and cause more headaches than anything else (excluding increased vendor margins and sales team bonuses, of course)?
Here’s another we-don’t-need-all-that-complexity real-life story coming from one of my long-term subscribers:
Interesting: PyEnv
If you’re like me, you’re probably sick-and-tired of Python versions, environments… Every time I update Python on my MacBook Pro with Homebrew, I lose all packages I installed for the previous version of Python (because I’m installing them system-wide and they’re stored in version-specific directory).
Jon Langemak found a potential solution to this problem: PyEnv. My first reaction was: Great, just what I need… but as he described how it really works, I realized that it’s always possible to add another layer of indirection. RFC1925 strikes again.
MUST Read: Blockchain, the amazing solution for almost nothing
One of the weekend reads collected by Russ White contained a pointer to a hilarious description of blockchain - a solution in search of a problem. Here are a few quotes to get you started (and I had a really hard time selecting just a few):
I’ve never seen so much bloated bombast fall so flat on closer inspection.
At its core, blockchain is a glorified spreadsheet.
The only thing is that there’s a huge gap between promise and reality. It seems that blockchain sounds best in a PowerPoint slide.
Someone should use that article as a framework and replace blockchain with OpenFlow or SDN ;)
Video: Cisco SD-WAN Routing Goodness
After covering the Cisco SD-WAN components and its architecture in the Cisco SD-WAN Foundations and Design Aspects webinar, David Penaloza focused on the routing capabilities it offers and its control plane characteristics, including types of routes and some scalability recommendations.
Are Business Needs Just Excuses for Vendor Shenanigans?
Every now and then I call someone’s baby ugly (or maybe it was their third cousin’s baby and they nonetheless feel offended). In such cases a common resort is to cite business or market needs to prove how ignorant and clueless I am. Here’s a sample LinkedIn comment talking about my ignorance about the need for smart NICs:
The rise of custom silicon by Presando [sic], Mellanox, Amazon, Intel and others confirms there is a real market need.
Now let’s get something straight: while there are good reasons to use tons of different things that might look inappropriate, irrelevant or plain stupid to an outsider, I don’t believe in real market need argument being used to justify anything without supporting technical facts (tell me why you need that stuff and prove to me that using it is the best way of solving a problem).
Why Don't We Have Dynamic Firewall Policies
One of the readers of the Considerations for Host-Based Firewalls blog post wrote this interesting comment:
Perhaps a paradigm shift is due for firewalls in general? I’m thinking quickly here but wondering if we perhaps just had a protocol by which a host could request upstream firewall(s) to open access inbound on their behalf dynamically, the hosts themselves would then automatically inform the security device what ports they need/want opened upstream.
Well, we have at least two protocols that could fit the bill: Universal Plug and Play and Port Control Protocol (RFC 6887).
How Docker Uses iptables to Implement Published Ports
In early September I explained the difference between exposed and published Docker container ports.
Now let’s peek behind the curtain and explore how Docker uses iptables to publish container ports, and why it runs a userland proxy process for every published port.
For even more details, explore the Docker Networking Deep Dive webinar.
Is Cisco ACI Too Different?
A friend of mine involved in multiple Cisco ACI installations sent me this comment on their tenant connectivity model:
I’m a bit allergic to ACI. The abstraction is mis-aligned with familiar configurations, in particular contracts being independent of and over-riding routing, tenants, etc. You can really make a mess with that, and I’ve seen some! One needs to impose some structure, naming conventions…, and most people don’t seem to get that done.
As I noticed in the NSX-or-ACI webinar, it’s interesting how NSX decided to stay with the familiar VLAN/routing/filtering paradigm (more details), whereas the designers of Cisco ACI decided to go down a totally different path.
Duty Calls: CPU Is Not Designed for Packet Forwarding
Junhui Liu added this comment to my Where Do We Need Smart NICs? blog post:
CPU is not designed for the purpose of packet forwarding. One example is packet order retaining. It is impossible for a multicore CPU to retain the packet order as is received after parallel processing by multiple cores. Another example is scheduling. Yes CPU can do scheduling, but at a very high tax of CPU cycles.
Worth Reading: The Making of an RFC in today’s IETF
Years ago I was naive enough to participate in writing an IETF document. Three years later we finally managed to turn it into an RFC, and I decided that was enough for one lifetime.
But wait, it gets worse… as Geoff Huston argues in his article, the lengthy review process doesn’t necessarily result in better (or more precise) documents.
Seems like we managed to turn IETF into yet another standard body like IEEE, ISO or ITU/T.
Video: ASICs 101
Earlier this year, Pete Lumbis returned as an ipSpace.net webinar guest speaker with a great presentation describing data center switching ASICs from the perspective of networking engineers. After a brief intro, he started with ASIC Basics… a topic which generated a 25-minute Q&A session.
Disaster Recovery: a Vendor Marketing Tale
Several engineers formerly working for a large virtualization vendor were pretty upset with me when I claimed that the virtualization consultants promote “disaster recovery using stretched VLANs” designs instead of alternatives that would implement proper separation of failure domains.
Guess what… it’s even worse than I thought.
Here’s a sequence of comments I received after reposting one of my “disaster recovery doesn’t need stretched VLANs” blog posts on LinkedIn sometime in late 2019: