Category: MPLS

The MPLS MTU Challenges

@MCL_Nicolas sent me the following tweet:

Finished @packetpushers Podcast show 7 with @ioshints ... I Want to learn more about Mpls+Mtu problem

You probably know I have to mention that a great MPLS/VPN book and a fantastic webinar describe numerous MPLS/VPN-related challenges and solutions (including MTU issues), but if MTU-related problems are the only thing standing between you and an awesome MPLS/VPN network, here are the details.

read more see 7 comments

OpenFlow FAQ: Will the Hype Ever Stop?

Network World has published another masterpiece last week: FAQ: What is OpenFlow and why is it needed? Following the physics-changing promises made during the Open Network Foundation launch, one would hope to get some straight facts; obviously things don’t work that way. Let’s walk through some of the points. While most of them might not be too incorrect from an oversimplified perspective, they do over-hype a potentially useful technology way out of proportions.

NW: “OpenFlow is a programmable network protocol designed to manage and direct traffic among routers and switches from various vendors.” This one is just a tad misleading. OpenFlow is actually a protocol that allows a controller to download forwarding tables into one or more switches. Whether that manages or directs traffic depends on what controller is programmed to do.

read more see 1 comments

VPLS versus OTV for L2 Data Center Interconnect (DCI)

DJ Spry asked an interesting question in a comment to my MPLS/VPN in DCI designs post: “Why would one choose OTV over MPLS/VPN?” The answer is simple: it depends on what you need. MPLS/VPN provides path isolation between layer-3 domains (routed networks) across MPLS or IP infrastructure whereas OTV providers layer-2 transport (and VLAN-based path isolation) across IP infrastructure. However, it does make sense to compare OTV with VPLS (which was DJ Spry’s next question). Apart from the obvious platform dependence (OTV runs on Nexus 7000, VPLS runs on Catalyst 6500/Cisco 7600 and a few other routers) which might disappear once ASR1K gets the rumored OTV support, there’s a huge gap in functionality and complexity between the two layer-2 transport technologies.

read more see 16 comments

FCoMPLS – attack of the zombies

A while ago someone asked me whether I think FC-over-MPLS would be a good PhD thesis. My response: while it’s always a good move to combine two totally unrelated fields in your PhD thesis (that almost guarantees you will be able to generate several unique and thus publishable articles), FCoMPLS might be tough because you’d have to make MPLS lossless. However, where there’s a will, there’s a way ... straight from the haze of the “Just because you can doesn’t mean you should” cloud comes FC-BB_PW defined in FC-BB-5 and several IETF drafts.

My first brief encounter with FCoMPLS was a twitxchange with Miroslaw Burnejko who responded to my “must be another lame joke” tweet with a link to a NANOG presentation briefly mentioning it and an RFC draft describing the FCoMPLS flow control details. If you know me, you have probably realized by now that I simply had to dig deeper.

read more see 3 comments

Campfire: the true story of MPLS

Just before 2010 disappeared, a tweet by my friend Greg @etherealmind Ferro triggered a minor twitstorm. He wrote:

If we had implemented IPv6 ten years ago, would we have MPLS today? I think not.

His tweet contains two major misconceptions:

  • MPLS was designed to implement layer-3 VPN services;
  • We wouldn’t need VPNs if everyone would be using global IPv6 addresses.

I’ll focus on the first one today; the inaccuracy of the second one is obvious to anyone who was asked to implement MPLS VPNs in enterprise networks to ensure end-to-end path separation between departments or users with different security levels.

read more see 5 comments

What is MPLS-TP and is it relevant?

At the time when I was writing my MPLS books and developing MPLS courses for Cisco, everyone was ecstatically promoting GMPLS (Generalized MPLS) as the next unifying technology of everything, making someone so fed up with the fad that he wrote the Electricity over IP RFC.

GMPLS got implemented in high-end routers, but never really took off (at least I’ve never seen or even heard about it). Obviously the transport teams found the idea of routers requesting on-demand lambdas with IP-based protocols too hard to swallow.

read more see 19 comments

BFD Has Reached RFC Status

Bidirectional Forwarding Detection (BFD) protocol has finally been published as a series of RFCs. BFD gives you quick failure detection between L3 hops (routers) regardless of the underlying technology and equipment (modems, media converters, bridges). It’s been gradually introduced in Cisco IOS during the last few years; release 15.0M and 12.2SRE contain almost everything you’ll ever need (missing: multihop BGP support and MPLS LSP support).

I wrote about BFD in Improve the Convergence of Mission-Critical Networks with Bidirectional Forwarding Detection (BFD) article (you’ll find it somewhere in this list). To learn more, read the RFCs in this order:

read more add comment

Did you notice 15.1T is released?

Unveiling of the Cisco IOS release 15.1(1)T was the extreme opposite of the CRS-3 and Catalyst 3750-X splashes; the next release of one of the foundations of Cisco’s core business deserved a modest two-paragraph mention in the What's New in Cisco Product Documentation page.

If you’re a voice guru, you’ll probably enjoy the list of 20+ voice-related new features, including the all-important Enhanced Music on Hold. For the rest of us, here’s what I found particularly interesting:

read more see 19 comments

MPLS TE Autoroute Fundamentals

An MPLS Traffic Engineering (MPLS TE) tunnel is a unidirectional Label Switched Path (LSP) established between the tunnel head-end Label Switch Router (LSR) and tail-end LSR. Once the tunnel is established and operational, it’s ready to forward IPv4 data traffic. However, no traffic will enter the tunnel unless the IPv4 routing tables and CEF tables are modified. You can push the traffic into an MPLS TE tunnel with a static route or with policy-based routing (PBR) or modify the behavior of the link-state algorithm used to implement MPLS TE in your network.

The autoroute functionality configured with the tunnel mpls autoroute announce interface configuration command automatically inserts the MPLS TE tunnel in the SPF tree and ensures the tunnel is used to transport all the traffic from the head-end LSR to all destinations behind the tail-end LSR.

read more add comment

Follow-up: P-to-P router encryption

The “P-to-P router encryption” post has generated numerous comments. One of the readers suggested using dedicated Ethernet encryption devices, which is probably the best option if you’ve realized you need encryption in the network acquisition phase when there’s still some budget left (too bad the vendor recommended in the comments does not want to admit how expensive the boxes are).

However, assuming you have high-speed IPSec encryption modules and you have to implement P-to-P encryption in existing network, the only option left to you is GRE tunnel. Here’s why:

read more see 8 comments

Carrier Ethernet service from customer’s perspective

As the Carrier Ethernet services are becoming more popular, people are starting to wonder how to use it in a router-based network. I’ve got the following question from one of my readers:

I was wondering if it was possible to design a redundant network where the core uses L2 MPLS, the provider edge uses L2 for access but the customer edge equipment uses L3 Routers. We don't want to customer to see any STP at their routers.

Of course you can do that. There are two scenarios to consider:

(A) The Service Provider is offering point-to-point Ethernet service (pseudowire). In this case, two of the customer routers would be connected with what looks like a point-to-point Ethernet link. Usually the remote site would have just one "outside" Ethernet connection while the hub site would have numerous links bundled in a trunked (VLAN) link.

(B) The SP is offering VPLS service. In this case, all customer routers appear as being connected to the same Ethernet segment.

In both cases, the customer edge (CE) routers should treat the SP Ethernet link as a simple LAN segment, in case (A) connecting two routers, in case (B) connecting many routers.

see 2 comments

VPLS Is Not Aspirin

If you’re old enough to remember the days when switches were still called bridges and were used to connect multiple sites over WAN links, you’ve probably experienced interesting network meltdowns caused by a single malfunctioning network interface card. Some of you might have had the “privilege” of encountering another somewhat failed attempt at WAN bridging: ATM LAN Emulation (LANE) service (not to mention the “famous” Catalyst 3000 switches with LANE uplink).

It looks like some people decided not to learn from others’ mistakes: years later the bridging-over-WAN idea has resurfaced in the VPLS clothes. While there are legitimate reasons why you’d want to have a bridged connection across the Service Provider network, VPLS should not be used to connect regular remote sites to a central site without on-site routers, as I explained in the VPLS: A secure LAN cloud solution for some, not all article I wrote in 2009 (republished below).

read more see 7 comments

Why are there no Untagged entries in my LFIB?

One of the readers of my “When would an MPLS LSR have Untagged output label?” post made an interesting comment:

When a loopback network is advertised as 1.1.0.0/16, it's seen as »pop tag« on the neighboring router and I can't see it in the »show mpls forwarding« printout on the local router. What's going on?

As explained in the “When would an MPLS LSR have Untagged output label?” post, the Untagged (also displayed as No label in recent IOS releases) value means that the Label Switch Router (LSR) cannot use the inbound label to decide what to do with the packet and has to perform layer-3 lookup.

read more see 3 comments

MPLS support on 1800-series routers

Christoph sent me an interesting question a few days ago:

I played a bit arround with 2 Cisco 1803 and I found MPLS related configurations commands in IOS 12.4(15)T (Advanced Enterprise) on this box. MPLS was not listed as a included fearture in the Cisco Feature Navigator for this image and some searching at cisco.com took me to a 2 year old document telling me that MPLS isn't supported on this series. Some more searching took me back to the Cisco Feature Navigator which lists MPLS as feature for the Cisco 1805 router (which uses the same IOS image, afaik).
So, I'm a bit confused now if MPLS is really working / supported on the low-end Cisco ISR 1800 fixed series?

MPLS was mostly available but never supported on low-end platforms (including Cisco 2600). In those days I've taken some heat for reusing existing 2600-based labs to teach Cisco-internal MPLS courses (since we were teaching the students to configure unsupported devices :).

Anyhow, the "not supported" means exactly that: it may be available (well, it is), it may work (it actually does), but if it's broken (and I've seen at least one low-end-platform-specific bug in the early days) you can't complain.

Is anyone aware whether the official support for the MPLS on 1800 series has changed? If so, please share your information with us.

If you need to offer a production-grade service to your customers, don't use unsupported equipment; if you need a solution for your personal needs or you're building a lab, go ahead.

see 10 comments
Sidebar