Building network automation solutions

9 module online course

Start now!

Category: OSPF

Unequal-Cost Multipath in Link State Protocols

TL&DR: You get unequal-cost multipath for free with distance-vector routing protocols. Implementing it in link state routing protocols is an order of magnitude more CPU-consuming.

Continuing our exploration of the Unequal-Cost Multipath world, why was it implemented in EIGRP decades ago, but not in OSPF or IS-IS?

Ignoring for the moment the “does it make sense” dilemma: finding downstream paths (paths strictly shorter than the current best path) is a side effect of running distance vector algorithms.

For a more formal discussion of loop-free alternates and downstream paths, please read RFC 5714 and RFC 5286.
read more see 1 comments

Link-State Routing Protocols Are Eventually Consistent

One of my readers sent me this interesting question:

Assuming we are running a very large OSPF area with a few thousand nodes. If we follow the chain reaction of OSPF LSA flooding while the network is converging at the same time, how would all routers come to know that they all now have same view of area link states and there are no further updates or convergence?

I have bad news: the design requirements for link state protocols effectively prevent that idea from ever working well.

read more see 1 comments

Reviving Old Content, Part 3

We had the usual gloomy December weather during the end-of-year holidays, and together with the partial lockdown (with confusing ever-changing rules only someone in Balkans could dream up) it managed to put me in OCD mood… and so I decided to remove broken links from the old blog posts.

While doing that I figured out how fragile our industry is – I encountered a graveyard of ideas and products that would make Google proud. Some of those blog posts were removed, I left others intact because they still have some technical merits, and I made sure to write sarcastic update notices on product-focused ones. Consider those comments Easter eggs… now go and find them ;))

read more add comment

What Exactly Happens after a Link Failure?

Imagine the following network running OSPF as the routing protocol. PE1–P1–PE2 is the primary path and PE1–P2–PE2 is the backup path. What happens on PE1 when the PE1–P1 link fails? What happens on PE2?

Sample 4-router network with a primary and a backup path

Sample 4-router network with a primary and a backup path

The second question is much easier to answer, and the answer is totally unambiguous as it only involves OSPF:

read more add comment

Reviving Old Content, Part 1

More than a decade ago I published tons of materials on a web site that eventually disappeared into digital nirvana, leaving heaps of broken links on my blog. I decided to clean up those links, and managed to save some of the vanished content from the Internet Archive:

I also updated dozens of blog posts while pretending to be Indiana Jones, including:

read more add comment

Why Is OSPF not Using TCP?

A Network Artist sent me a long list of OSPF-related questions after watching the Routing Protocols section of our How Networks Really Work webinar. Starting with an easy one:

From historical perspective, any idea why OSPF guys invented their own transport protocol instead of just relying upon TCP?

I wasn’t there when OSPF was designed, but I have a few possible explanations. Let’s start with the what functionality should the transport protocol provide reasons:

read more see 9 comments

Must Read: Redistributing Full BGP Feed into OSPF

The idea of redistributing the full Internet routing table (840.000 routes at this moment) into OSPF sound as ridiculous as it is, but when fat fingers strike it should be relatively easy to recover, right? Just disable redistribution (assuming you can still log into the offending device) and move on.

Wrong. As Dmytro Shypovalov explained in an extensive blog post, you might have to restart all routers in your OSPF domain to recover.

And that, my friends, is why OSPF is a single failure domain, and why you should never run OSPF between your data center fabric and servers or VM appliances.

see 3 comments

MUST READ: What I've learned about scaling OSPF in Datacenters

Justin Pietsch published a fantastic recap of his experience running OSPF in AWS infrastructure. You MUST read what he wrote, here’s the TL&DR summary:

  • Contrary to popular myths, OSPF works well on very large leaf-and-spine networks.
  • OSPF nuances are really hard to grasp intuitively, and the only way to know what will happen is to run tests with the same codebase you plan to use in production environment.

Dinesh Dutt made similar claims on one of our podcasts, and I wrote numerous blog posts on the same topic. Not that anyone would care or listen, it’s so much better to watch vendor slide decks full of latest unicorn dust… but in the end, it’s usually not the protocol that’s broken, but the network design.

add comment

Running OSPF in a Single Non-Backbone Area

One of my subscribers sent me an interesting puzzle:

>One of my colleagues configured a single-area OSPF process in a customer VRF customer, but instead of using area 0, he used area 123 nssa. Obviously it works, but I was thinking: “What the heck, a single OSPF area MUST be in Area 0

Not really. OSPF behaves identically within an area (modulo stub/NSSA behavior) regardless of the area number…

read more see 5 comments
Sidebar