Stretched VLANs: What Problem Are You Trying to Solve?
One of ipSpace.net subscribers sent me this interesting question:
I am the network administrator of a small data center network that spans 2 buildings. The main building has a pair of L2/L3 10G core switches. The second building has a stack of access switches connected to the main building with 10G uplinks. This secondary datacenter has got some ESX hosts and NAS for remote backup and some VM for development and testing, but all the Internet connection, firewall and server are in the main building.
There is no routing in the secondary building and most of the VLANs are stretched. Do you think I must change that (bringing routing to the secondary datacenter), or keep it simple like it is now?
As always, it depends, this time on what problem are you trying to solve?
Why Do We Need BGP-LS?
One of my readers sent me this interesting question:
I understand that an SDN controller needs network topology information to build traffic engineering paths with PCE/PCEP… but why would we use BGP-LS to extract the network topology information? Why can’t we run OSPF with controller by simulating a software based OSPF instance in every area to get topology view?
There are several reasons to use BGP-LS:
Unexpected Interactions Between OSPF and BGP
It started with an interesting question tweeted by @pilgrimdave81
I’ve seen on Cisco NX-OS that it’s preferring a (ospf->bgp) locally redistributed route over a learned EBGP route, until/unless you clear the route, then it correctly prefers the learned BGP one. Seems to be just ooo but don’t remember this being an issue?
Ignoring the “why would you get the same route over OSPF and EBGP, and why would you redistribute an alternate copy of a route you’re getting over EBGP into BGP” aspect, Peter Palúch wrote a detailed explanation of what’s going on and allowed me to copy into a blog post to make it more permanent:
Comparing EVPN with Flood-and-Learn Fabrics
One of ipSpace.net subscribers sent me this question after watching the EVPN Technical Deep Dive webinar:
Do you have a writeup that compares and contrasts the hardware resource utilization when one uses flood-and-learn or BGP EVPN in a leaf-and-spine network?
I don’t… so let’s fix that omission. In this blog post we’ll focus on pure layer-2 forwarding (aka bridging), a follow-up blog post will describe the implications of adding EVPN IP functionality.
Worth Reading: Machine Learning Deserves Better Than This
This article is totally unrelated to networking, and describes how medical researchers misuse machine learning hype to publish two-column snake oil. Any correlation with AI/ML in networking is purely coincidental.
Worth Reading: Is Your Consultant a Parasite?
Stumbled upon a must-read article: Is Your Consultant a Parasite?
For an even more snarky take on the subject, enjoy the Ten basic rules for dealing with strategy consultants by Simon Wardley.
Video: Comparing Routing and Bridging
After covering the basics of transparent Ethernet bridging and IP routing, we’re finally ready to compare the two. Enjoy the ride ;)
Questions about BGP in the Data Center (with a Whiff of SRv6)
Henk Smit left numerous questions in a comment referring to the Rethinking BGP in the Data Center presentation by Russ White:
In Russ White’s presentation, he listed a few requirements to compare BGP, IS-IS and OSPF. Prefix distribution, filtering, TE, tagging, vendor-support, autoconfig and topology visibility. The one thing I was missing was: scalability.
I noticed the same thing. We kept hearing how BGP scales better than link-state protocols (no doubt about that) and how you couldn’t possibly build a large data center fabric with a link-state protocol… and yet this aspect wasn’t even mentioned.
… updated on Friday, June 18, 2021 15:46 UTC
Deploying Plug-and-Pray Software in Large-Scale Networks
One of my readers sent me a sad story describing how Chromium service discovery broke a large multicast-enabled network.
The last couple of weeks found me helping a customer trying to find and resolve a very hard to find “network performance” issue. In the end it turned out to be a combination of ill conceived application nonsense and a setup with a too large blast radius/failure domain/fate sharing. The latter most probably based upon very valid decisions in the past (business needs, uniformity of configuration and management).
… updated on Monday, July 12, 2021 17:46 UTC
OSPF Inter-Process Route Selection
The traditional wisdom claimed that a Cisco IOS router cannot compare routes between different OSPF routing processes. The only parameter to consider when comparing routes coming from different routing processes is the admin distance, and unless you change the default admin distance for one of the processes, the results will be random.
Following Vladislav’s comment to a decade-old blog post, I decided to do a quick test, and found out that code changes tend to invalidate traditional wisdom. OSPF inter-process route selection is no exception. That’s why it’s so stupid to rely on undefined behavior in your network design, memorize such trivia, test the memorization capabilities in certification labs, or read decades-old blog posts describing arcane behavior.
ipSpace.net Subscription for System Administrators
One of our subscribers sent me this question:
I am a system administrator working primarily on server/storage virtualization. How would you recommend I take full advantage of the subscription while not being in networking full-time?
Let’s start with the webinars focused on technologies and fundamentals:
- If you’re interested in networking fundamentals, go through the first part of How Networks Really Work — stop when you feel it’s turning into a deep dive.
- As a sysadmin, you probably work within a data center environment. Data Center Infrastructure for Networking Engineers is another fundamentals-focused webinar worth exploring.
- Involved in multi-site DC deployments? Check out the Data Center Interconnects and Designing Active-Active and Disaster Recovery Data Centers.
- On the storage side, there’s Hyper-Converged Infrastructure Deep Dive and The Network Impact of NVMe over Fabrics (NVMe-oF).
Intricate AWS IPv6 Direct Connect Challenges
In his Where AWS IPv6 networking fails blog post, Jason Lavoie documents an intricate consequence of 2-pizza-teams not talking to one another: it’s really hard to get IPv6 in AWS VPC working with Transit Gateway and Direct Connect in large-scale multi-account environment due to the way IPv6 prefixes are propagated from VPCs to Direct Connect Gateway.
It’s one of those IPv6-only little details that you could never spot before stumbling on it in a real-life deployment… and to make it worse, it works well in IPv4 if you did proper address planning (which you can’t in IPv6).
Worth Reading: The Lost Designer
Scott Berkun published another interesting article: The Lost Designer. As always, replace designer with networking engineer and enjoy.
Lessons Learned: Technology Still Matters
In June 2020, a friend asked me to do a short presentation on lessons learned during my 35 years as a networking engineer. It went reasonably well, so I decided to turn it into a webinar, starting with regardless of what the disruptive marketers tell you, technology still matters.
… updated on Monday, July 12, 2021 18:00 UTC
Unnumbered Ethernet Interfaces, DHCP Edition
Last week we explored the basics of unnumbered IPv4 Ethernet interfaces, and how you could use them to save IPv4 address space in routed access networks. I also mentioned that you could simplify the head-end router configuration if you’re using DHCP instead of per-host static routes.
Obviously you’d need a smart DHCP server/relay implementation to make this work. Simplistic local DHCP server would allocate an IP address to a client requesting one, send a response and move on. Likewise, a DHCP relay would forward a DHCP request to a remote DHCP server (adding enough information to allow the DHCP server to select the desired DHCP pool) and forward its response to the client.