Fast Failover: Hardware and Software Implementations

In previous blog posts in this series we discussed whether it makes sense to invest into fast failover network designs, the topologies you can use in such designs, and the fault detection techniques. I also hinted at different fast failover implementations; this blog post focuses on some of them.

Hardware-based failover changes the hardware forwarding tables after a hardware-detectable link failure, most likely loss-of-light or transceiver-reported link fault. Forwarding hardware cannot do extensive calculations; the alternate paths are thus usually pre-programmed (more details below).

read more see 13 comments

Why Is Public Cloud Networking So Different?

A while ago (eons before AWS introduced Gateway Load Balancer) I discussed the intricacies of AWS and Azure networking with a very smart engineer working for a security appliance vendor, and he said something along the lines of “it shows these things were designed by software developers – they have no idea how networks should work.

In reality, at least some aspects of public cloud networking come closer to the original ideas of how IP and data-link layers should fit together than today’s flat earth theories, so he probably wanted to say “they make it so hard for me to insert my virtual appliance into their network.

read more see 1 comments

Worth Reading: Do Your Homework

Tom Hollingsworth wrote another must-read blog post in which he explained what one should do before asking for help:

If someone comes to me and says, “I tried this and it failed and I got this message. I looked it up and the response didn’t make sense. Can you tell me why that is?” I rejoice. That person has done the legwork and narrowed the question down to the key piece they need to know.

In other words (again his), do your homework first and then ask relevant questions.

add comment

Video: Know Your Users' Needs

After explaining why you should focus on defining the problem before searching for a magic technology that will solve it, I continued the Focus on Business Challenges First presentation with another set of seemingly simple questions:

  • Who are your users/customers?
  • What do they really need?
  • Assuming you’re a service provider, what are you able to sell to your customers… and how are you different from your competitors?
The video is part of Business Aspects of Networking Technologies webinar and available with Free ipSpace.net Subscription.
add comment

Fast Failover: Topologies

In the blog post introducing fast failover challenge I mentioned several typical topologies used in fast failover designs. It’s time to explore them.

The Basics

Fast failover is (by definition) adjustment to a change in network topology that happens before a routing protocol wakes up and deals with the change. It can therefore use only locally available information, and cannot involve changes in upstream devices. The node adjacent to the failed link has to deal with the failure on its own without involving anyone else.

read more add comment

Why Is OSPF not Using TCP?

A Network Artist sent me a long list of OSPF-related questions after watching the Routing Protocols section of our How Networks Really Work webinar. Starting with an easy one:

From historical perspective, any idea why OSPF guys invented their own transport protocol instead of just relying upon TCP?

I wasn’t there when OSPF was designed, but I have a few possible explanations. Let’s start with the what functionality should the transport protocol provide reasons:

read more see 9 comments

How Fast Can We Detect a Network Failure?

In the introductory fast failover blog post I mentioned the challenge of fast link- and node failure detection, and how it makes little sense to waste your efforts on fast failover tricks if the routing protocol convergence time has the same order of magnitude as failure detection time.

Now let’s focus on realistic failure detection mechanisms and detection times. Imagine a system connecting a hardware switching platform (example: data center switch or a high-end router) with a software switching platform (midrange router):

read more see 1 comments

Self-promotion Disguised as Research Paper

From AI is wrestling with a replication crisis (HT: Drew Conry-Murray)

Last month Nature published a damning response written by 31 scientists to a study from Google Health that had appeared in the journal earlier this year. Google was describing successful trials of an AI that looked for signs of breast cancer in medical images. But according to its critics, the Google team provided so little information about its code and how it was tested that the study amounted to nothing more than a promotion of proprietary tech (emphasis mine).

No surprise there, we’ve seen it before (not to mention the “look how awesome we are, but we can’t tell you the detailsJupiter Rising article).

add comment

Video: Getting a Packet Across a Network

After (hopefully) agreeing on what routing, bridging, and switching are, let’s focus on the first important topic in this area: how do we get a packet across the network? Yet again, there are three fundamentally different technologies:

  • Source node knows the full path (source routing)
  • Source node opens a path (virtual circuit) to the destination node and uses that path to send traffic
  • The network performs hop-by-hop destination-address-based packet forwarding.

More details in the Getting Packets Across the Network video.

The video is part of How Networks Really Work webinar and available with Free ipSpace.net Subscription.
add comment

Worth Reading: Protocol Options Rusted Shut

A long while ago I found a great article explaining TLS 1.3 and its migration woes on CloudFlare blog. While I would strongly recommend you read it just to get familiar with TLS 1.3, the real fun starts when the author discusses migration problems, kludges you have to use trying to fix them, less-than-compliant implementations breaking those kludges, and options that were supposed to be dynamic, but turn out to be static (rusted shut) due to middleboxes that implemented protocols as-seen-in-the-wild not as-described-in-RFCs.

Change a few TLAs and you could be reading about TCP, IP stack, IPv6, BGP… I addressed those aspects in the ossification and centralization part of Upcoming Internet Challenges webinar.

add comment

Fast Failover: The Challenge

Sometimes you’re asked to design a network that will reroute around a failure in milliseconds. Is that feasible? Maybe. Is it simple? Absolutely not.

In this series of blog posts we’ll start with the basics, explore the technologies that you can use to reach that goal, and discover one or two unexpected rabbit holes.

Fast failover is just one of the topics we’ll discuss in Advanced Routing Protocol Features part of How Networks Really Work webinar.
read more see 3 comments

New Content: VMware NSX-T 3.0 Update

When VMware NSX-T 3.0 came out, I planned to do an update session of the VMware NSX Technical Deep Dive webinar along the lines of what I did for AWS Networking a few weeks ago. However, it turned out that most of the new features didn’t take more than a bullet or two on an existing slide, or at most a new slide.

Covering them in a live session and then slicing-and-dicing the resulting recording simply didn’t make sense, so I updated the videos in summer 2020 (the last batch was published in early August).

read more add comment

Renumbering Public Cloud Address Space

Got this question from one of the networking engineers “blessed” with rampant clueless-rush-to-the-cloud.

I plan to peer multiple VNet from different regions. The problem is that there is not any consistent deployment in regards to the private IP subnets used on each VNet to the point I found several of them using public IP blocks as private IP ranges. As far as I recall, in Azure we can’t re-ip the VNets as the resource will be deleted so I don’t see any other option than use NAT from offending VNet subnets to use my internal RFC1918 IPv4 range. Do you have a better idea?

The way I understand Azure, while you COULD have any address range configured as VNet CIDR block, you MUST have non-overlapping address ranges for VNet peering.

read more add comment
Sidebar