External Brains Driving an MLAG Cluster

The architecture described in this blog post is long gone, but it’s worth remembering what vendors tried in the past and why it failed – someone will inevitably try to sell an obsolete idea as the next best thing since sliced bread (see also RFC 1925 Rule 11)

Juniper has introduced an interesting twist to the Stacking on Steroids architecture: the brains of the box (control plane) are outsourced. When you want to build a virtual chassis (Juniper’s marketing term for stack of core switches) out of EX8200 switches, you offload all the control-plane functionality (Spanning Tree Protocol, Link Aggregation Control Protocol, first-hop redundancy protocol, routing protocols) to an external box (XRE200).

read more see 12 comments

Interesting links (2010-10-31)

This set of links is somewhat different: they all deal with IT, but mostly with non-technical part of it.

Kevin Bovis @ Etherealmind continues a series of great insightful articles with Network Design – Creativity and Compromise. Must-read for anyone striving to be involved in network design.

The IT Disconnect by Tom Carpenter tackles one of the fundamental IT issues: we’re too busy dealing with our problems to focus on the problems of those paying us to deliver the service.

Chuck Hollis is describing stupid approaches customer use to structure their RFPs. If you were ever working for a vendor or system integrator, you’ll find it hilarious.

Mike Workman is dealing with the same problem from the customer perspective: “Why is it so hard to shop?

add comment

DHCPv6 relaying: another trouble spot?

My DHCPv6+PPPoE post received a very comprehensive comment from Ole Troan (thank you!) in which he explains the context in which DHCPv6 was developed (a mechanism to give a static IPv6 prefix to a customer) and its intended usage (as the prefix is static, it should have a very long lifetime).

However, when you deploy DHCPv6 in some modern access networks (it’s not just PPPoE, Carrier Ethernet fares no better), you might experience subtle problems. Let’s start with a step-by-step description of how DHCPv6 works:

read more see 14 comments

DHCPv6 over PPPoE: Total disaster

Every time someone throws me an IPv6 curveball, I’m surprised when I discover another huge can of worms (I guess I should have learned by now). This time it started pretty innocently with a seemingly simple PPPoE question:

What happens if an ISP decides to assign dynamic IPv6 subnets? With static assignment, the whole stuff is pretty straight-forward due to ND, RA & DHCPv6, but if dynamic addresses are used, what happens if the subnet changes - how will the change be propagated to the end-user devices? The whole thing is no problem today due to the usage of NAT / PAT...

LAN address allocation with changing DHCPv6 prefix is definitely a major problem, but didn’t seem insurmountable. After all, you can tweak RA timers on the LAN interface, so even though the prefix delegated through DHCPv6 would change, the LAN clients would pick up the change pretty quickly. WRONG ... at least if you use Cisco IOS.

read more see 9 comments

Solution: EIGRP Summarization Breaks Phase 2 DMVPN

Last week I posted an interesting challenge: what happens if you configure route summarization in a Phase 2 DMVPN network? The only response came from an anonymous contributor strongly suspected to be a routing/DMVPN expert working for a CCIE-related training company.

The anonymous responder was somewhat cryptic, so let’s do a step-by-step explanation. We’ll use a simple 3-router network; C1 is hub, R2 and R3 are spokes.

read more see 9 comments

QoS over MPLS/VPN Networks

A while ago John McManus wrote a great DSCP QoS Over MPLS Thoughts article at Etherealmind blog explaining how 6-bit IP DSCP value gets mapped into 3-bit MPLS EXP bits (now renamed to Traffic Class field). The most important lesson from his post should be “there is no direct DSCP-to-EXP mapping and you have to coordinate your ideas with the SP”. Let’s dig deeper into the SP architecture to truly understand the complexities of this topic.

We’ll start with a reference diagram: user traffic is flowing from Site-A to Site-B and the Service Provider is offering MPLS/VPN service between PE-A and PE-B. Traffic from multiple customer sites (including Site-A) is concentrated at SW-A and passed in individual VLANs to PE-A.

read more see 1 comments

EIGRP Summarization in DMVPN Phase 2 Networks

Imagine the following scenario: you’ve configured a Phase 2 DMVPN network with a hub and a few spokes. DMVPN is configured properly, IPSec and NHRP are working, you can ping all around the DMVPN cloud.

Next step: configuring EIGRP. You know you have to disable EIGRP split horizon and EIGRP next-hop processing. You even remember to configure interface bandwidth.

Someone told you to minimize the EIGRP routing traffic, so you use EIGRP stub routers on the spokes and route summarization on the hub router. The final EIGRP configuration is shown in the following diagram:

read more see 3 comments

Data Center Interconnect (DCI) encryption

Brad sent me an interesting DCI encryption question a while ago. Our discussion started with:

We have a pair of 10GbE links between our data centers. We talked to a hardware encryption vendor who told us our L3 EIGRP DCI could not be used and we would have to convert it to a pure Layer 2 link. This doesn't make sense to me as our hand-off into the carrier network is 10GbE; couldn't we just insert the Ethernet encryptor as a "transparent" device connected to our routed port ?

The whole thing obviously started as a layering confusion. Brad is routing traffic between his data centers (the long-distance vMotion demon hasn’t visited his server admins yet), so he’s talking about L3 DCI.

The encryptor vendor has a different perspective and sent him the following requirements:

read more see 5 comments

Multi-chassis Link Aggregation: Stacking on Steroids

In the Multi-chassis Link Aggregation (MLAG) Basics post I’ve described how you can use (usually vendor-proprietary) technologies to bundle links connected to two upstream switches into a single logical channel, bypassing the Spanning Tree Protocol (STP) port blocking. While every vendor takes a different approach to MLAG, there are only a few architectures that you’ll see. Let’s start with the most obvious one: stacking on steroids.

read more see 9 comments

PFC/ETS and storage traffic: the real story

Data Center Ethernet (or DCB or CEE, depending on who you are) is a hot story these days and it’s no wonder that misconceptions galore. However, when I hear several CCIEs I highly respect talk about “Priority Flow Control can be used to stop all the other traffic when storage needs more bandwidth”, I get worried. Exactly the opposite is true: you use PFC to stop the overzealous storage traffic (primarily FCoE, but also iSCSI) to make sure you don’t drop it.

read more add comment

PPPoE Testbed

During my last Building IPv6 Service Provider Core webinar I got a lot of questions about IPv6 over PPPoE (obviously we’re close to widespread IPv6 implementation; I never got PPPoE questions before). I wanted to test various scenarios in my IPv6 lab and thus enabled PPPoE on an Ethernet link between CE and PE routers.

This time I wanted to test multiple configurations in parallel ... no problem thanks versatile PPPoE implementation in Cisco.

read more see 10 comments
Sidebar